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The axisymmetric problem of the theory of elasticity is considered for a body
bounded by two spherical and two conical surfaces, The results of [1, 2] are

used to perform an asymptotic analysis of the stress-strain state of the shell, Meth-
ods developed in [3, 4] are used to reduce the boundary value problem to infinite
systems,

1. We consider an elastic conical shell, using the spherical coordinate system
r, 8, @ (<r<ra i< 09 C2v)

¥ ’

and assume that the conditions L
Ga Ly Oq Tre = 0 ( '1)

hold on the conical boundaries (6 == 6,, 0 = 0,).
Using the results of [1, 2], we apply the method of homogeneous solutions to express

the stresses and displacements in the form
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3= 94° + 26" D C\r Qg S, =3,° 4 26r™" B CorRQ,  (1.3)
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Tpo =T,0° + 260~ D) Cpr T,
where k=1

w,° = Cor {4 (1 — V) cos O — (1 — 2v) (cos 8, -+ cos 0,)] — A4 cos 0
w® = Cor ' [13 — 4v) sin O — (1 — 2v) (1 + cos 0 cos 8,) csc O - (1.4)
+ {1 — 2v) {cos O, -} cos 0x) clg B8] - A sin B

0,° = 26Cyr2 {2 (2 — vy cos O — {1 — 29} (cos 0 - cos 6,)]

0" = —2 (1 — 2v) GCyr? fcos U — (1 - cos 0, cos 0y) ctg O esc O -
-+ (cos 0, -+ cos 0,) ctg? 0}
gw" = —2 (1 — 2v) GCyr2 [eos O - (1 - cos (; cos 0,) ctg 6 csc O -

- (cos Oy - cos Oy) (1 - etz O] (1.5)

T:O = e (1 — 29) GO ® [sin O — (1 -5 coe 0y cos 0,) exe 0 |- (cos 0y - cos O,) vty O
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U= (2 — 1) @ 59 == P18, 2) = (5 + 1) 028, 2,)
d 8 d 2 8: z
Uy = (2 —'4’\>+ ) bl gz") Ak (de k)
Qup = (3 — ) (5% — bz + a+29) b1 (O 2 — (2 — 1) $a (8, 2,)
Qgy = — (2 = 2} (5 + 2 + 2y — ) b1 (0 2) — (5 + /s = 4v) dipy/d® - (4.6)
(2 A+ Y22 42 (0, 2,) 4 ¢t g B dipa/dD
Qg = (7 = ") (3 — /2 + V) X0y 2) + (5 + "/ = 4v) ctg 0 dpy/dd —
— (5 D b (O ) — otg O dipu/db
Ty = (2,2 — 73 -+ 2v — T/} da/d® — (2, — 1/2) dipa/d®
P18, 2) = (2 — /) (&2 — o) @1 (— 3) [esc 82D,y (6, 01) —
— DD (01,02 DY) (8, B2} + (4.7)
o U — )3 (2 — 1) ctg 8D (B, 02) DO (8, 62)
+ (2 =P 1 () DI (O, 0) DY) (6, 02)
$2(8,2) = — (. — Y22 91(2) @1 (— =) [osc 029“,,2 9, B2) —
— DED (0, 09D (91, 0] + a8
4 4 (1 — ) 201 (— 2) ctg 0D (B, 02) DY (6, 62) +
+ (24 122 02 (— z,) DD (81, 0) DY) (6, 682)
DD (@up) = P (cos §) QY (cos ) — P (cos §) QI (cos ) (1.9)

In the formulas (1,2) - (1.9 p}-‘*) {cos ¢) and Q(tz) {cos @) denote the Legendre funct-
ions of the first and second kind, respectively, ¢, (3} = 2>+ 2+ 2v — %, Gand v are
elastic constants, 4, ¢, and Cj are arbitrary constants and 4 are the complex zeros
of the function

Afz) = — (2 — 1/9) 1@12(')[)2)_';2 (01, 2) 9,“1/)2 ((‘)1, 02) ~—
— (2 22— 2) D“:f}’ (01, 02) D) (81, 82) +
4 (=) 2 (2 — 2 91 () DI (O3, 02) Letg 02D ) (B, 82) A+
+ ctg DX (B, 8] — 4 (1 —v) = (1 G1 (— 2) DY) (B, 62) X

2%y
X [ctg 8DEY (01, 0.) + ctg 0. DL (0, 02)) +
416 (4 — v?) 22 ctg 01 ctg 02 DEY DU (01, 8) — (1.40)

— (2 — Y () @1 (— 2) (D) (O, i DL s, 82) +
+ DY) (B3, 8) DG (01, 02)] — 2 (22 — /1) @1 () G (— 2) ese Br ese B
The terms u,°, ug° and 1,4 appearing in (1,2) and (1, 3) correspond to the real zeros
z01 = —0.5. and 22 = 0.5 of the function A (3).

2, We now turn our attention to the pattern of the state of stress described by the
homogeneous solutions (1, 2) - (1, 8).
We first consider the relationship connecting the homogeneous solutions with the prin-
cipal stress vector P acting at the cross section r = const. We have
8y
P o= 2nr? X (5,c080 — 1, 4sinf)sin 640 2.9
8y
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Inserting (1, 3) into (2.1) we obtain

oo
P=Coro+r" 3, Oy, 2.2)
k=1

Yo = —4nG (cos 6y — cos 8;) (cos® 8, + 2v cos O, cos O, - cos® 6,)

'
¥, = 4nG j (Q c08® — T', sin B) sin 8 d6 @.3)
8,
We shall show that all Yk (¢ = 1, 2, 3, ...) are equal to zero, Consider the following
boundary value problem y -
B —%2 - P —
O = rlir Qn’ Tra =Ty Ts r=ry (2.4)
s, = r:k— /2 Qr.s’ Tpg = rzk : Ts (r=r3

Assurning that the solutions of (2, 4) are unique, we obtain them by setting in (1,2) and
(1.3) € = 0 for all k= s and Cs = 1. The principal vector corresponding to the state
of stress of the problem (2. 4) has the form

P, = 4nGr z'+l/’Ts (2.5)

By virtue of the condition that the problem of the theory of elasticity has a solution, the
vector P, cannot depend on r, consequently P, = 0 and v: = 0. Thus the complex
zeros #; have a corresponding state of stress which is self-equilibrating at each cross
section r = const. We obtain the following final expression for the principal vector:
P = y,C, (2.6)

Further investigation will be conducted under the assumption that the difference 2 =
= 0 — 8, is small, Let us therefore set 6, = 0, — ¢ and 8, = 0, -+ ¢ assume that the
parameter € is small and that 0 <{ §; < 0, <C & <C V,n (§, and &, are some constants),

We note that the value 6, = !/,n corresponds to a plate of variable thickness and will
not be considered here,

It was shown in [2] that the roots of the characteristic equation (1,10) can be divided

into three groups, according to the character of their asymptotic behavior when & — 0
1. 201 = —0.5, 200 = 0.5 2.7

2. neo=8V(a_y teay +.)  (k=1,2 3 1
a_ g +3(1—vY)ctg?B =0
i =40 a_u Y124 (1 — v*) ctg? 8o 4 5 (9 — 8v)] 2.8
3o =e b, +o(€Y)] (k=56..) (2.9
sin®2b_,, —4b_,2=0
We set for convenience a_ix = %k, a1 = By and by = &; (! = k — 4). The solution(1, 4)
and (1, 5) corresponds to the roots of the first group, It has been shown that this solution
can be used to remove the principal stress vector from the end faces, We note that the
root zex = U.5 corresponds to translation of the cone as a rigid body,
Below we shall show that the zeros of the second and third group correspond to tne

solutions of the edge effect with varying stress-strain state indices,
Let us transform the solution (1,2), (1.3) taking into account the smallness of & and
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the formulas (2.7) to (2, 9). Setting® = 8, + en and r = ryp. —1 < < 1and expanding
all expressions contained in (1,4) - (1,7) in terms of & in accordance with the groups
of zeros given above, we obtain

u, = ur(O) + ur(l) + ur(ﬁ)’ uy = ug(ﬂ) + uO(l) + u.(ﬁ)
Gr = G?(O) + Gr(1> + cr(g}' 69 e 59{0) + G’(l) + 5.(2)

(2.10)
Gm == CS@(O) + Sw(l) + ch(g)’ Tre = Tre(ﬂ) + Tra(l) + Tfa(g)

where
u, @ == r1Cop™ [— 2 cos By - 4 (1 — ¥) Ne sin Bp - 0 (€3)] — A [cos B0 — &7 sin 8o + 0 (e2)]
46 = r1Cop™ [— 2 (1 — ¥) 5in 8o — 2 (2 — v) &1 c08 By 4 0 (¢7)] +-4 [sin B + &7 cos By H-o{e?)]
5,9 = CoGp~2 [4 (1 - v) cos B — 4 (2 — v) en sin Bp +- 0 (£7)]
5o = CoGp262 [2 (1 — 2v) (? — 1) cos Bo + 0 (e3)]
6, =— CoGp2[8 (1 — 2v) cos B sin™® By — & (1 — 2v) 1) (1 4 cos? Bg)* sin~® Bo + o (¥)]

Tro® = CoGp%6 [2 (1 — 2v) (1 — 1) sin 80 + 0 (8)] (2-41)
4 4
u,® =ri(ele)* 3} 40,0, ug = riep™ 3} AUy @
k=1 k=1
4 4
s, =gp~ 2 40,0, oM =G 2 A0, Y (212)
k=1 k=1
a 4
1 .
5,0 =Go™ S| A5, @, T =Gl e/e) D) Ayt
k=1 k=1

U W =<—12 (1 — v) (e, + v, " etg 00) etg o + &2 (v — 2) 0, 2, —
—3 (1 —v) 1208, — 3} ctg Bo— Ov (1 — v a, 7IB, ctg® O] -
+e2(Tv—2) o, B, — 420 (1 —v¥) P ctgBo—3 (1 —v)a "1 [(4v — B)p—
— 6v ctg Bo) ctg B0 — 6 (1 — v2) oy, ctg B [1-— 45 (v - 2) ctgg B0 —
— (—1) (v — v -+ 2) ctg Bo]} -+ ...> exp (£ 7201, In p)
Ugil® = <42 (1 — v?) ctg B - & {48 (1 — v v, ™1 By, ctg Bo — [16 (1 — v?) ctg Bo —
— B4V v — ) etgOo 4 (dv— 5 tg 0ol a2 - 12 (1 — v%) B, ctg Qo —
— 6 (1 — ¥?) (21 -+ 1 — v) ctg® B0} 4 &2 {6 (1 — v¥) B, [1 — (2v) + 1.— ¥) ctg Bo] ctg Bo -+
448 (1 — %) o, P2 ctg B0 — [16 (1 — v¥) ctg B0 — B (1 4 v) (* — 1) ctg Bo +
4 (4v — 5) tg O] o, BB, + 2 (1 - v} (1 — 2v) (1 — 1) o, otg B0} +-...> exp (™ o Inp)

6,5V = 4 (1 4 V)G ctg Bo <— 6na2 4 662 [1(2 — v — o, B,) o +-
Al —v)aletg O] 4+ {8 2 — v —6)a,B, —3(1 —2vin—
— 810, 2B, + [tg Bo - (3VN? — 61 - 2 — 61 — v) ctg 8] 0, %} + ... > exp (&7 o, In p)

S =3 (1 4 v) (n — 1) G ctg 8o <4 (M -+ 1) ctg 8o [3 (1 — +?) ctg Bo —V/s (2v — 1) +
+ Yz va oy + 872 (& (4 1 etg 00 [3 (1—+?) By ctg B0 + s vou 2 B, — Ya (2v — 1) B, 1} +
4 & {32 (1 — v?) (30 + 2) o, 2B, ctg? Bo — 12 [8 (1 — v) (19v — T) ctg® 8o + (88 — 63y —
— 20w (1) otg B0 -+ ¥z v (1 + 1) 22y, ctg Bo + (213
<AV (1) (— 6) — (31 1) (16v — 19) 4 ctg? 8o [2 (92 -} 4v 4
4 15) -+ 4v(2NE — 1+ 1) — 4v(1 — v) (1 — 1)2 — 6(1 — 2W)(n+ Doy H4..> exp (&0, In p)
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Sl = 2G <12(1 + v) [(1 - v*) ctg o — v 2] etg Bo €72 {12 (1 4 v) x
X oy [(1 — V) etg B0 — v Pl elg o — 12 (1 + v) (1 — 2v) Ny, etg 0o} +
+e {881+ v) (1 —v) a7 B ctg? 0o 4 (1 4-v) [1 — 8 (1 — 2v) etg? 0o -

4 6v (1 - v) (P — 1) ctg® o] o, ? 4- 12 (1 + v) o, B (21— v -4 2v) X
X ctg 0o 4 6 (1 — v¥) (1 - v) o, ctg? Bo — 6v (L 4 v) N, *P,, ctg Oy —

— 3+ V)[4 (1 —v) (4 1) etg? B + (1 — v) (2v — )] ctg Oa} 4 ...> exp (772, In p)

Tl = 6G (1 +v) o, OF — 1) otg O 2,2 4 21,8, — e, +
+ el By 4 (o, —Yanetg o) o 2 - 6v—5] 4 ..o exp (ea"’(’ccK Inp)

0, ® = oo™t DB (L= B 8,F, () + (1 +#) 8,72F " ()] exp (28, Inp)
=0

ug® = — r g™ DV Byl +38) £ () + (L + k) 8,72 F" ()] exp ¢7* 8, ln p)
I=1

v =)
5, ® =2Gp™: 2 ByF," () exp (€728, In p)
1551

¢y = 26u™ 3} B8, F, (1) exp (€719, Inp) (2.4
155 )

5, % = 2G5+ D) By [F)" () + 8,°F, ()] exp (=28, la p)
i=1

x>
T = — 2667 3\ ByF )/ (n) exp (718, Inp)

le==1

Here Ay and B; are new unknown constants and t = (1 — 2v)"1; Fy (n) in (2,14) de-
note the Papkovich functions,

F, )=, 'sind, +-cosd)cosd; n+nsind;sindm =13 ) 245

Fym)=(sin 8; — 8,71cos §;)sindn-h-ncosd,cos §n  (=214,..) (2.16)

3, We consider the problem of removing the stresses from the end surfaces of the
shell, Let the following stresses be prescribed when r = r; (s = 1, 2)

S, == [ (6), Trg = [p5(0) 8.1
Functions f;; (0) satisfy the conditions of equilibrium
8, 0,
2ura? 5(}‘11 cos 0 — fxn sin€)sin 640 == 2“'225 (/12050 — f228in 0) 8in 60 = P  (3.2)
‘N Uy

where P is the principal stress vector acting in any cross section r = const,

As we have shown before, the non-self-equilibrating part of the stresses (3,1) can be
removed using the penetrating solution (1, 4) and (1. 5) with the constant (', and the
principal stress vector P connected by Eq, (2,6), Below we shall assume that P = 0.
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We shall seek the solution in the form (1,2), (1,3). According to the assumption made
above that €, = 0. The arbitrary constants ¢, whose variations are assumed independent,
will be determined using as in [3, 4], the Lagrange’s variational principle,

Since the homogeneous solutions satisfy the equations of equilibrium and the boundary
conditions on the conical surface, the variational principle assumes the following form

2 9,
1 202 | 15, — 1) Bu, o+ (T — fp4) Bugl,, sinBdD=0 (3.3)
$=1 84

Equating to zero the coefficients accompanying the independent variations 8Cy, we ob-
tain the following infinite system:

D) mCy = a; (=1,23.) (3.4
k=1
where
8
my = (7 p323+~/|.).\ (Q,,U,; +TUy)sin 040 (3.9}
0y
2 B,
(Ij - Z ps;]'*’s/:: (: (‘f‘:Ur"j + f‘zsUﬂj) sin 049 (36)
8=1 01

It can be shown that this system is positive definite in the energy space H. h and there-
fore has a solution whenever physically meaningful conditions are imposed on its right-
hand side,

Using the smallness of the shell thickness parameter 2¢ == §, — 6,;, we can construct
an asymptotic solution of (3,4), We begin by sharpening the assumptions concerning the
external load,

Assume that f., ~ 1 , Then the assumption that o, and T,, corresponding to the
roots of the second group are of different order (6 ~ 1, 1) ~ V&) implies that the
choice of the order of . /2 must be guided by the following considerations, Using the

formulas (2,13) and (2,14) and the fact that /. (4-1) = 0, we obtain
1

N 4
Td=—16G (1 +v)p~: ctg One': Z Ao Bexp (e a, Inp) 3.7)
-1 k=1
Writing now the tangential stresses prescribed at the boundary in the form
9.
fas= 1o + 1o, fol) = j Ll 1o = o= 1Y (3.8)

N
we find that the asymptotic formula (3, 7) leads us to the necessary assumption that /U
is of the order of &2, while £? may be of the same order as fis: i.e, /2 ~ 1.
Further, using the formulas (2,13) and (2.14) we seek the constants A and F; in the

form —_ — 0
A=A+ Ve 4, 4., By=D,+ Ve B, (3.9)

Taking into account the order of the stresses prescribed at the boundary, we now use
the variational principle to obtain the following system of equations for 4ye and Bjo:
4
2 njpAgp = 4 G=1,2,34.) (3.10)
k=1
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[+ 2] (5]
D guBy=b, (t=1,3.), D euBp="b (t=24.) @1
=1, 3 1=2,4
where
Ry =16 G (1 — v 0,2 (a2, — d,) ctg? 6o (3.42)

2 1
a; = D plexp (e a;Inp) f [f — 115877 (1 + v ctg B0 a7 ) dn
8==1 —1
82,2 (sin? §,— sin? 3)) ) \ ,
81 =40 T35, =0, [(k—1) (824 8,5 +

2 3,46
F20+ 10881 Do, eXP( 0, ps)

€
$=1

g, =4G8 (1 —¥ssin®8,) D) plexp (20, /elnp)
s=1
2 1

. 8 ‘ o

b= ) o l-exp (—S’-mps) § 1 [(1 — BT+ () L
s=1 ]
Ft’/

~h @ E A g |lan =t

L

For t, | = 2,4, ... the corresponding expressions for £: are obtained when replacing
in the above formulas cos 9; by sin §; and sin §; by — cos &; respectively,

The structure of the system obtained enables us to conclude that the unknowns 4o
corresponding to the second group of zeros and the unknowns Bjo corresponding to the
third group of zeros, can be obtained independently,

The process of determining i and By; (i = 1, 2,...)can invariably be reduced to in-
verting identical matrices coinciding with the matrices of (3,10) and (3, 11),

It should be noted that the systems (3,11) have been already encountered in the theory
of thick plates [5, 6] and served repeatedly as the basis of numerical analysis of various
problems,

The system (3,10), (3,11) becomes considerably simplified when the state of stress
of a semi~infinite cone (p, == 1, p, — <) or of a cone with an apex {p, == 1, p, = 0).
is considered,

In the first case all unknowns corresponding to the zeros for which Rea;, >  and
Red; > 0, should be made equal to zero, In the second case the boundedness of the
solution at the apex suggests equating to zero those unknowns, for which Reay < 0 and
Red, < 0. Both cases yield systems which are formally identical

2ty =@ (=12 (3.43)
k=1

S 6u 0 =80 (=12,

=1
The coefficients and the right-hand sides of (3,13) are easily obtained from the corres-
ponding coefficients and right-hand sides of (3,10) and (3,11) by setting p, == 1 and
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p; — oo in the first case, and ¢; = 0 and ps = 1 in the second case,

Let us now clarify the pattern of the state of stress corresponding to the zeros of the
second and the third group, We set, for simplicity, p, = 0 and p. = 1 (r = pry) and
compute the bending moment and the shearing force for each group of solutions, We
have o

M= rs? f {6, sin (8 — Bo) — T, [1 — cos (8 — 6c)]} sin 0d0 =~

9
1
~er,2sinto [ odr+o(e) (3.14)
6, —t 1
Q=rg y [5, sin (8 — 6c) +- 7,4 cos (9 — B0)] sin 0d = erz sin O S T,qd0 4+ 0 (€7
9, —1

Inserting now the expressions for the stresses, we obtain

4
Mi=—32G(14v) e~ ra? cos 8o Z Ao, exp (e o, Inp) 4 o(e”?)

. = (3.15)
Q1= —8G (14 v)racos 8o (—:—) Z A3 exp (e o, Inp) 4 o (e?)
k=1
M2 = o (e3), Q2=o0(e? (3.16)

Thus the principal parts of the bending moment and the shearing force determine the
solution for the second group,

In conclusion we note that the asymptotic method developed in this paper can be used
to remove the stresses from the end faces of the boundary of a conical shell, From the
conical part of the boundary the stresses can be removed by constructing applied theories
with help of the methods and examples giw'/en in [3, 4], and this alone could merit a
special study, The removal could be realized by solving the problem of the theory of
elasticity for an infinite conical shell with the help of the Mellin transformation,
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